3.17.6 \(\int \frac {(d+e x)^4}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx\) [1606]

Optimal. Leaf size=209 \[ -\frac {4 e^3 (b d-a e)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(b d-a e)^4}{4 b^5 (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {4 e (b d-a e)^3}{3 b^5 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {3 e^2 (b d-a e)^2}{b^5 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {e^4 (a+b x) \log (a+b x)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}} \]

[Out]

-4*e^3*(-a*e+b*d)/b^5/((b*x+a)^2)^(1/2)-1/4*(-a*e+b*d)^4/b^5/(b*x+a)^3/((b*x+a)^2)^(1/2)-4/3*e*(-a*e+b*d)^3/b^
5/(b*x+a)^2/((b*x+a)^2)^(1/2)-3*e^2*(-a*e+b*d)^2/b^5/(b*x+a)/((b*x+a)^2)^(1/2)+e^4*(b*x+a)*ln(b*x+a)/b^5/((b*x
+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {660, 45} \begin {gather*} -\frac {4 e^3 (b d-a e)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {3 e^2 (b d-a e)^2}{b^5 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {4 e (b d-a e)^3}{3 b^5 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(b d-a e)^4}{4 b^5 (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {e^4 (a+b x) \log (a+b x)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^4/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(-4*e^3*(b*d - a*e))/(b^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (b*d - a*e)^4/(4*b^5*(a + b*x)^3*Sqrt[a^2 + 2*a*b*x
 + b^2*x^2]) - (4*e*(b*d - a*e)^3)/(3*b^5*(a + b*x)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (3*e^2*(b*d - a*e)^2)/(
b^5*(a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (e^4*(a + b*x)*Log[a + b*x])/(b^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2]
)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 660

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^4}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=\frac {\left (b^4 \left (a b+b^2 x\right )\right ) \int \frac {(d+e x)^4}{\left (a b+b^2 x\right )^5} \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=\frac {\left (b^4 \left (a b+b^2 x\right )\right ) \int \left (\frac {(b d-a e)^4}{b^9 (a+b x)^5}+\frac {4 e (b d-a e)^3}{b^9 (a+b x)^4}+\frac {6 e^2 (b d-a e)^2}{b^9 (a+b x)^3}+\frac {4 e^3 (b d-a e)}{b^9 (a+b x)^2}+\frac {e^4}{b^9 (a+b x)}\right ) \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {4 e^3 (b d-a e)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(b d-a e)^4}{4 b^5 (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {4 e (b d-a e)^3}{3 b^5 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {3 e^2 (b d-a e)^2}{b^5 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {e^4 (a+b x) \log (a+b x)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 138, normalized size = 0.66 \begin {gather*} \frac {-\left ((b d-a e) \left (25 a^3 e^3+a^2 b e^2 (13 d+88 e x)+a b^2 e \left (7 d^2+40 d e x+108 e^2 x^2\right )+b^3 \left (3 d^3+16 d^2 e x+36 d e^2 x^2+48 e^3 x^3\right )\right )\right )+12 e^4 (a+b x)^4 \log (a+b x)}{12 b^5 (a+b x)^3 \sqrt {(a+b x)^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^4/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(-((b*d - a*e)*(25*a^3*e^3 + a^2*b*e^2*(13*d + 88*e*x) + a*b^2*e*(7*d^2 + 40*d*e*x + 108*e^2*x^2) + b^3*(3*d^3
 + 16*d^2*e*x + 36*d*e^2*x^2 + 48*e^3*x^3))) + 12*e^4*(a + b*x)^4*Log[a + b*x])/(12*b^5*(a + b*x)^3*Sqrt[(a +
b*x)^2])

________________________________________________________________________________________

Maple [A]
time = 0.71, size = 267, normalized size = 1.28

method result size
risch \(\frac {\sqrt {\left (b x +a \right )^{2}}\, \left (\frac {4 e^{3} \left (a e -b d \right ) x^{3}}{b^{2}}+\frac {3 e^{2} \left (3 a^{2} e^{2}-2 a b d e -b^{2} d^{2}\right ) x^{2}}{b^{3}}+\frac {2 e \left (11 e^{3} a^{3}-6 a^{2} b d \,e^{2}-3 a \,b^{2} d^{2} e -2 b^{3} d^{3}\right ) x}{3 b^{4}}+\frac {25 e^{4} a^{4}-12 a^{3} b d \,e^{3}-6 a^{2} b^{2} d^{2} e^{2}-4 a \,b^{3} d^{3} e -3 b^{4} d^{4}}{12 b^{5}}\right )}{\left (b x +a \right )^{5}}+\frac {\sqrt {\left (b x +a \right )^{2}}\, e^{4} \ln \left (b x +a \right )}{\left (b x +a \right ) b^{5}}\) \(202\)
default \(\frac {\left (12 \ln \left (b x +a \right ) b^{4} e^{4} x^{4}+48 \ln \left (b x +a \right ) a \,b^{3} e^{4} x^{3}+72 \ln \left (b x +a \right ) a^{2} b^{2} e^{4} x^{2}+48 a \,b^{3} e^{4} x^{3}-48 b^{4} d \,e^{3} x^{3}+48 \ln \left (b x +a \right ) a^{3} b \,e^{4} x +108 a^{2} b^{2} e^{4} x^{2}-72 a \,b^{3} d \,e^{3} x^{2}-36 b^{4} d^{2} e^{2} x^{2}+12 \ln \left (b x +a \right ) a^{4} e^{4}+88 a^{3} b \,e^{4} x -48 a^{2} b^{2} d \,e^{3} x -24 a \,b^{3} d^{2} e^{2} x -16 b^{4} d^{3} e x +25 e^{4} a^{4}-12 a^{3} b d \,e^{3}-6 a^{2} b^{2} d^{2} e^{2}-4 a \,b^{3} d^{3} e -3 b^{4} d^{4}\right ) \left (b x +a \right )}{12 b^{5} \left (\left (b x +a \right )^{2}\right )^{\frac {5}{2}}}\) \(267\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^4/(b^2*x^2+2*a*b*x+a^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/12*(12*ln(b*x+a)*b^4*e^4*x^4+48*ln(b*x+a)*a*b^3*e^4*x^3+72*ln(b*x+a)*a^2*b^2*e^4*x^2+48*a*b^3*e^4*x^3-48*b^4
*d*e^3*x^3+48*ln(b*x+a)*a^3*b*e^4*x+108*a^2*b^2*e^4*x^2-72*a*b^3*d*e^3*x^2-36*b^4*d^2*e^2*x^2+12*ln(b*x+a)*a^4
*e^4+88*a^3*b*e^4*x-48*a^2*b^2*d*e^3*x-24*a*b^3*d^2*e^2*x-16*b^4*d^3*e*x+25*e^4*a^4-12*a^3*b*d*e^3-6*a^2*b^2*d
^2*e^2-4*a*b^3*d^3*e-3*b^4*d^4)*(b*x+a)/b^5/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 321 vs. \(2 (152) = 304\).
time = 0.29, size = 321, normalized size = 1.54 \begin {gather*} -\frac {1}{3} \, d^{3} {\left (\frac {4}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} b^{2}} - \frac {3 \, a}{b^{6} {\left (x + \frac {a}{b}\right )}^{4}}\right )} e - \frac {1}{2} \, d^{2} {\left (\frac {6}{b^{5} {\left (x + \frac {a}{b}\right )}^{2}} - \frac {8 \, a}{b^{6} {\left (x + \frac {a}{b}\right )}^{3}} + \frac {3 \, a^{2}}{b^{7} {\left (x + \frac {a}{b}\right )}^{4}}\right )} e^{2} - \frac {1}{3} \, d {\left (\frac {12 \, x^{2}}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} b^{2}} + \frac {8 \, a^{2}}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} b^{4}} + \frac {6 \, a}{b^{6} {\left (x + \frac {a}{b}\right )}^{2}} - \frac {8 \, a^{2}}{b^{7} {\left (x + \frac {a}{b}\right )}^{3}} - \frac {3 \, a^{3}}{b^{8} {\left (x + \frac {a}{b}\right )}^{4}}\right )} e^{3} + \frac {1}{12} \, {\left (\frac {48 \, a b^{3} x^{3} + 108 \, a^{2} b^{2} x^{2} + 88 \, a^{3} b x + 25 \, a^{4}}{b^{9} x^{4} + 4 \, a b^{8} x^{3} + 6 \, a^{2} b^{7} x^{2} + 4 \, a^{3} b^{6} x + a^{4} b^{5}} + \frac {12 \, \log \left (b x + a\right )}{b^{5}}\right )} e^{4} - \frac {d^{4}}{4 \, b^{5} {\left (x + \frac {a}{b}\right )}^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

-1/3*d^3*(4/((b^2*x^2 + 2*a*b*x + a^2)^(3/2)*b^2) - 3*a/(b^6*(x + a/b)^4))*e - 1/2*d^2*(6/(b^5*(x + a/b)^2) -
8*a/(b^6*(x + a/b)^3) + 3*a^2/(b^7*(x + a/b)^4))*e^2 - 1/3*d*(12*x^2/((b^2*x^2 + 2*a*b*x + a^2)^(3/2)*b^2) + 8
*a^2/((b^2*x^2 + 2*a*b*x + a^2)^(3/2)*b^4) + 6*a/(b^6*(x + a/b)^2) - 8*a^2/(b^7*(x + a/b)^3) - 3*a^3/(b^8*(x +
 a/b)^4))*e^3 + 1/12*((48*a*b^3*x^3 + 108*a^2*b^2*x^2 + 88*a^3*b*x + 25*a^4)/(b^9*x^4 + 4*a*b^8*x^3 + 6*a^2*b^
7*x^2 + 4*a^3*b^6*x + a^4*b^5) + 12*log(b*x + a)/b^5)*e^4 - 1/4*d^4/(b^5*(x + a/b)^4)

________________________________________________________________________________________

Fricas [A]
time = 2.52, size = 240, normalized size = 1.15 \begin {gather*} -\frac {3 \, b^{4} d^{4} - 12 \, {\left (b^{4} x^{4} + 4 \, a b^{3} x^{3} + 6 \, a^{2} b^{2} x^{2} + 4 \, a^{3} b x + a^{4}\right )} e^{4} \log \left (b x + a\right ) - {\left (48 \, a b^{3} x^{3} + 108 \, a^{2} b^{2} x^{2} + 88 \, a^{3} b x + 25 \, a^{4}\right )} e^{4} + 12 \, {\left (4 \, b^{4} d x^{3} + 6 \, a b^{3} d x^{2} + 4 \, a^{2} b^{2} d x + a^{3} b d\right )} e^{3} + 6 \, {\left (6 \, b^{4} d^{2} x^{2} + 4 \, a b^{3} d^{2} x + a^{2} b^{2} d^{2}\right )} e^{2} + 4 \, {\left (4 \, b^{4} d^{3} x + a b^{3} d^{3}\right )} e}{12 \, {\left (b^{9} x^{4} + 4 \, a b^{8} x^{3} + 6 \, a^{2} b^{7} x^{2} + 4 \, a^{3} b^{6} x + a^{4} b^{5}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

-1/12*(3*b^4*d^4 - 12*(b^4*x^4 + 4*a*b^3*x^3 + 6*a^2*b^2*x^2 + 4*a^3*b*x + a^4)*e^4*log(b*x + a) - (48*a*b^3*x
^3 + 108*a^2*b^2*x^2 + 88*a^3*b*x + 25*a^4)*e^4 + 12*(4*b^4*d*x^3 + 6*a*b^3*d*x^2 + 4*a^2*b^2*d*x + a^3*b*d)*e
^3 + 6*(6*b^4*d^2*x^2 + 4*a*b^3*d^2*x + a^2*b^2*d^2)*e^2 + 4*(4*b^4*d^3*x + a*b^3*d^3)*e)/(b^9*x^4 + 4*a*b^8*x
^3 + 6*a^2*b^7*x^2 + 4*a^3*b^6*x + a^4*b^5)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{4}}{\left (\left (a + b x\right )^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**4/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Integral((d + e*x)**4/((a + b*x)**2)**(5/2), x)

________________________________________________________________________________________

Giac [A]
time = 0.98, size = 190, normalized size = 0.91 \begin {gather*} \frac {e^{4} \log \left ({\left | b x + a \right |}\right )}{b^{5} \mathrm {sgn}\left (b x + a\right )} - \frac {48 \, {\left (b^{3} d e^{3} - a b^{2} e^{4}\right )} x^{3} + 36 \, {\left (b^{3} d^{2} e^{2} + 2 \, a b^{2} d e^{3} - 3 \, a^{2} b e^{4}\right )} x^{2} + 8 \, {\left (2 \, b^{3} d^{3} e + 3 \, a b^{2} d^{2} e^{2} + 6 \, a^{2} b d e^{3} - 11 \, a^{3} e^{4}\right )} x + \frac {3 \, b^{4} d^{4} + 4 \, a b^{3} d^{3} e + 6 \, a^{2} b^{2} d^{2} e^{2} + 12 \, a^{3} b d e^{3} - 25 \, a^{4} e^{4}}{b}}{12 \, {\left (b x + a\right )}^{4} b^{4} \mathrm {sgn}\left (b x + a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

e^4*log(abs(b*x + a))/(b^5*sgn(b*x + a)) - 1/12*(48*(b^3*d*e^3 - a*b^2*e^4)*x^3 + 36*(b^3*d^2*e^2 + 2*a*b^2*d*
e^3 - 3*a^2*b*e^4)*x^2 + 8*(2*b^3*d^3*e + 3*a*b^2*d^2*e^2 + 6*a^2*b*d*e^3 - 11*a^3*e^4)*x + (3*b^4*d^4 + 4*a*b
^3*d^3*e + 6*a^2*b^2*d^2*e^2 + 12*a^3*b*d*e^3 - 25*a^4*e^4)/b)/((b*x + a)^4*b^4*sgn(b*x + a))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^4}{{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^4/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2),x)

[Out]

int((d + e*x)^4/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2), x)

________________________________________________________________________________________